
VIPER INTERNAL DUAL SWITCHPAKS FOR MEMORY ADDRESSING AND BUS
CONTROLS

Switchpak #2

#1 and #2 switches are the extended memory addressing
control lines. Switches #1 and #2 should never be on
at the same time. Unless you are using the System 5
with its extended memory addressing capabilities
switch, 1 should always be off and switch 2 should always
be on.

Switch #3 is used to modify the addressing values of
Switchpak #1 by 4K increments.

Switch is a signal called System-Enable. The Viper
must disable this signal in order to use the Bally bus
to communicate with the Z-80 microprocessor inside.

Switch #5 is called Buzzoff. This signal must also be
used to control the Viper to Bally bus signals.

Switch #6 is the Casette enable signal. This is used
to enable or disable the cassette cartridge slot when
using the Viper 1.

Swich #7 is the 7 meg. clock signal from the Bally bus.
This clock is used to control the Viper Ram operation
timing.

Switch #8 is used for changing the clock to the Ram from
external (the Bally clock) to the internal Crystal Y1.
Y1 is optional and is not included with the system.

THE NEW EXTENDED BASIC 1.0 COMMANDS LIST

To execute the following, type in the command, fill in the
variables and hit "go".

"NEW” This command will erase all memory and reprint extended
basic 1.0. This command is the equivalent to pressing the reset
button.

"DEFAULT” The default command will reset all the graphics and
character window variables plus the music prosessor.

"ZERO" Clears all letter variables A to Z.

"DATA" Initializes variables. Example - DATA A,5,10,15=a=5;

b=10; c=15.

NEW GRAFIX COMMANDS

"CIRCLE" X,Y,R,M. To draw a circle, you must enter the X and Y

coordinates for the center, then the r a d i u s $, and then the

mode. Example - Circle 0,0,50,1 will draw a circle at the center

of the screen 50 pixels wide in color 1.

"SCROLL” X, Y, X size, Y size +/- #lines.

SCROLL 0, 0, 50, 50, - 100. This will scroll an area 50 pixels

wide, by 50 pixels high, down 100 pixels. This will scroll

upwards if # positive, downwards if negative.

"SNAP" X, Y, XS, YS @ (#). This command takes a snapshot of the

image on the screen, starting with XY as the center and XS, YS

are the variables used for the size of the area you want to save.

The image is then stored in the @ (#)• Example - 0,0,20,20@(100).

This will snap the image starting at the center of the screen 0,0.

An area 20 pixels wide and 20 pixels high will then be

stored in string @ (100).

"SHOW" X, Y, SHOWMODE, @ {#). This command will display the

snapped image with XY as the center. The string # (@(#)) then

must be the same as the snap @ (#). Special showmodes are:

0 PLOP

1 OR

2 XOR

The XOR mode is used to mix the color with whatever

color is already on the screen. This means that if you

were to use a box in mode 1 the color would be equal to the

FA value and when it passed over an area of a different color

the two would mixwith each other rather than erase one with the

other.

The Plop mode will place the box on the screen in the color

you select- and erase anything that was there before.

NEW MODES :

The following grafix commands use the new mode table below:

CIRCLE,
POINT,

LINE, MODE:
BOX.

0-nothing 4-PLOP 0
1- XOR 5-PLOP 1
2- XOR 2 6-PLOP 2
3- XOR 3 7-PLOP 3

This quick program will help to familiarize you with this

feature and also verify the proper operation of the Viper System.

LOADING EXTENDED BASIC FROM TAPE:

The auto write protect switch position is primarily designed

to implement the use of Jay Fenton's excellent Extended Basic,

which is included free with every Viper 1 . The language occupies

the first 8K of Ram Space. This will leave you approximately 8K

of programming Ram minus approximately 1K of Ram for the basic to

use as stock and scratch pad. Since the language is loaded from

tape, it is possible that not every tape recorded will load

properly due to poor tape head alignment on the low end priced

recorders. It is strongly recommended that a quality tape

recorder be used when loading the language to insure proper

operation. A check sum program is included to verify if your load

was 100% correct or not. Once you have verified a perfect load,

you then must make a copy of it onto your regular tape recorder

so you will have a compatible copy for your regular recorder.

To use:

Set the 8K/24K switch to 24K, then with your regular Bally

Basic, load the tape as if it were any program : input/go.

The tape will tape approximately 7-8 minutes to load, at

the end of the load it will print out (load done, throw write

switch to Auto Write Protect Position), then press the go key to

jump to the extended basic. If the load was at least partially

successful, the screen should clear, and then print in the new

small character font "Extended Basic 1.0".

GRAFIX WINDOW SCREEN LOCATIONS, XL, XR, YT, YB.

CHARACTER WINDOW SCREEN LOCATIONS AT, CL, CR, CT, CB.

ADDRESS OPERATOR

Putting a in front of a variable, will give its address.

for example:

PRINT <- A will print -17238, which is the memory location

where A's value would be stored.

PROGRAMMABLE WRITE PROTECT/WRITE ENABLE CIRCUIT:

The Programmable Write Protect Circuit enables the user to

protect the entire 16k of memory from being accidently erased

if your program causes the computer to crash* This saves time

in not having to reload the extended memory because it will not

have been erased. (Power failure or holding the reset button

down for too long will cause a loss of memory.) With this

feature, you can remove the Bally Basic cartridge, play some

games, then stick Bally Basic back in and continue programming

where you left off, without having to reload extended Basic

because the data will remain intact. To use, set the Auto

Write/Programmable Write switch in the Programmable position,

then enter &(192)=0, this command will allow you to enter data

to the Ram. To protect it (convert Ram to Rom) simply enter

&(64)=0. Now the Ram is protected from being accidently or

otherwise changed or lost.

Example: set the 8K/24K switch in 24K position.

Program Comments

&(192)=0 Write enable.

%(24576)=32767 Poke 32767 into first extended
memory address.

Print % (24576) Test to see if it has been written
to our 32767.

Now that the number is in our first extended memory address,

turn off the Write Enable.

&(64)=0 Write Protect the Ram.

% (24576)=0 Try to change the value in the memory
to zero.

Print %(24576) Verify that it did not change to 0 but
is still 32767.

AUTO WRITE SWITCH:

The reason you must use the Auto Write Switch position with

the Extended Basic running is because 1/2 of the Ram is being used

to store the new basic language and the other half is being used

by you to write programs in. Because of this, you must be able to

write to the upper 8K of memory, but still protect the lower 8K.

If the lower 8K was ever written into, you'd destroy the memory

containing the Extended Basic. The Auto Write Circuit is designed

to check to see what area of memory you are in, and then auto­

matically turn on and off the Write Protect/Write Enable Circuit.

Whenever the memory address is using Extended Basic, it will

protect it from accidently being written over. Then when the

address is above the limits of the language, it allows you to

write it to memory so you can write programs in Extended Basic.

COPY CARTRIDGE PROGRAM

10 : input ; for I = 24576 to 28672; %(I) = KP; Next I

50 : return ; print "1-switch to Auto Write,"

52 Print "2-remove basic cartridge,"

54 Print "3-throw switch to 8K"

58 Print "press reset to play!."

60 STOP

100 Clear ; 1 print; list; print "Run"; For I = 1 to 2000;

next I ; C+=-46; N+=0

110 For I = 8192 to 12288; TV=% (I); Next I : Return

150 : Return; Default; clear; Print "Done"

TOKENS

The following control characters type the corresponding

tokens.

A RND (AMBIGUITY)

B BOX

C CLEAR

D DATA

E (edit key for line editor)

F FOR

G GOSUB

H RUBOUT or ERASE

I INPUT

J GOTO (jump)

K IF (near I)

L LIST

M GO

N NEXT

0 CIRCLE (there's a circle on the key)

P PRINT

Q SNAP (near SHOW on keyboard)

R RETURN

S STEP

T TO

U POINT (UPDATE A POINT)

V DEFAULT (VARIABLE DEFAULT)

W SHOW (WRITE TO SCREEN)

X RUN (X FOR EXECUTE)

Y SCROLL (WHO KNOWS)

Z ZERO

EXAMPLE: To abbreviate PRINT type PR. PRI. or just P .

NEW VARIABLES

GRAFIX VARIABLES

XL left, right, top and bottom limits of the
XR graphics window
YT
YB

CHARACTER VARIABLES

CL left, right, top and bottom limits of character
CR window
CT
CB

CC character color

FA foreground color 1
FB foreground color 2
FC foreground color 3
BC background color

LC last character displayed on screen

NB number base - ie. changing to 16 will print Hex,
2 binary and so on

BYTE (VARIABLE, byte #) = EXPR/SETS indicated byte (0 - low
order, 1 high order) = to EXPR

C = BYTE (EXPR, byte #) returns indicated byte of EXPR

CHANGING CHARACTER FONTS

To change from the default of SMALL 3x5 to LARGE 5x7 , type the
following:

CF = LARGE

To reset to small characters, type :

CF = SMALL

HEX # INPUT

By putting a ! in front of a hexadecimal number, it becomes decimal.
for example:

PRINT !2FF will type: 767 , the decimal equivalent.

